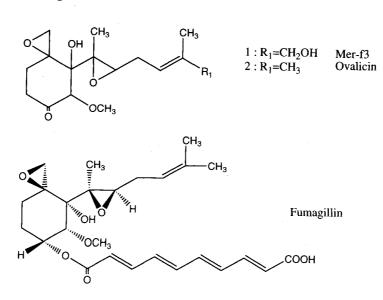
Mer-f3, 12-Hydroxy-ovalicin, Produced by *Metarrhizium* sp. f3

Sir:

In the course of our screening program for new antitumor antibiotics, Mer-f3 (1), a new ovalicin related compound (Fig. 1), was found in the culture filtrate of *Metarrhizium* sp. f3 which was isolated from a soil sample. In this paper, we report the production, isolation, physico-chemical properties, biological activities and structure of Mer-f3.

The Mer-f3-producing strain, f3, was isolated from a soil sample collected at Kanagawa prefecture, Japan, and was identified as *Metarrhizium* sp. by morphological characteristics. It was deposited at the National Institute of Bioscience and Human-Technology, Ibaraki Prefecture, Japan with accession number FERM P-15860. The strain was cultured at 27°C for 4 days on a rotary shaker (220 rpm) in 500 ml Erlenmeyer flasks containing 50 ml of a medium composed of potato starch 2%, glucose 1%, soy bean meal 2%, KH₂PO₄ 0.1% and MgSO₄ ·7H₂O 0.005%.


The culture broth (4.6 liters) was centrifuged at 4000 rpm for 20 minutes to obtain culture supernatant, and was extracted with equal volume of EtOAc. The extract was dried *in vacuo* to give an oily substance (*ca.* 820 mg). The crude material was applied on a silica gel column and the active compound was eluted with CHCl₃-MeOH (50:1). The active fractions were

collected and concentrated under reduced pressure to yield a yellow powder (157 mg). This powder was purified by a LH-20 chromatography using MeOH to provide 10 mg of pure Mer-f3 (1) as a colorless oil.

Physico-chemical properties of 1 are summarized in Table 1. The antibiotic was easily soluble in CHCl₃, MeOH, DMSO and hardly soluble in water. It gave positive color reaction to molybdophosphoric acid, 2,4-dinitrophenylhydrazine and anisaldehyde-H₂SO₄ reagents and negative to ninhydrin and Rydon-Smith reagents. The UV spectrum had an end absorption and IR spectrum suggested the presence of hydroxy group (3470 cm^{-1}) and carbonyl group (1739 cm^{-1}) .

The molecular formula of 1 was determined to be $C_{16}H_{24}O_6$ base on HRFAB-MS data and was supported by ¹H and ¹³C NMR spectral data (Table 1 and 2). All one bond connections between ¹H and ¹³C were elucidated by the ¹H-¹³C COSY and DEPT experiments. The NMR data and the molecular formula indicated the presence of three methyls, five methylenes, two sp^3 methines and one sp^2 methine, four quaternary carbons, one carbonyl carbon and two hydroxy groups. The above mentioned physico-chemical properties and NMR data were similar to those of ovalicin $(2)^{1,2}$. The direct comparison of ¹³C NMR revealed the following differences (Table 2). One methyl signal (C-12, δ 25.4) in 2 was replaced by oxygen-bearing methylene signal (C-12, δ 68.2) in **1**. Other signals of **1** coincided with **2**, suggesting the common ovalicin skeleton. All the assignments of protons and carbons of 1 were confirmed by ¹H-¹H

Fig. 1. Structure of Mer-f3, and related compounds.

Appearance	colorless oil	
Nature	neutral	
Molecular formula	$C_{16}H_{24}O_{6}$	
FAB-MS (m/z)	335 (M+Na)⁺	
	311 (M-H) ⁻	
HRFAB-MS (m/z)		
Calcd:	335.1471 (C ₁₆ H ₂₄ O ₆ Na)	
Found:	335.1465 (M+Na) ⁺	
UV λmax (ε) in MeOH	End absorption	
IR Umax (neat) cm ⁻¹	3470, 2930, 1730, 1440, 1380,	
	1110, 1030, 1000	
$\left[\alpha\right]_{D}^{29}$	-46° (c 0.5, MeOH)	
Rf	0.16 ^a	
	0.21 ^b	

Table 1. Physico-chemical properties of Mer-f3.

a: Silica gel TLC (Merck Art. No. 105715) CHCl₃-MeOH=10:1 b: Silica gel TLC (Merck Art. No. 105715) toluene-EtOAc=1:1

Mer-f3 in CDCl3			Ovalicin in CDCl3 ²⁾
Position	¹³ C(Multiplicity)	¹ H(Multiplicity, J value, Hz)	¹³ C(Multiplicity
1	78.5(s)		78.2(s)
2	86.0(d)	4.24(1H, s)	85.9(d)
3	206.5(s)		206.2(s)
4	36.6(t)	2.50(1H, m), 2.68(1H, m)	36.4(t)
5	30.2(t)	1.45(1H, m), 2.62(1H, m)	30.0(t)
6	60.5(s)		60.2(s)
7	60.3(s)		60.0(s)
8	56.5(d)	2.95(1H, t, <i>J</i> = 6.60)	56.5(d)
9	26.5(t)	2.28(1H, m), 2.41(1H, m)	26.8(t)
10	119.0(d)	5.52(1H, td, <i>J</i> =7.33, 1.46)	117.8(d)
11	138.3(s)		135.0(s)
12	68.2(t)	4.06(2H, d, <i>J</i> =4.76)	25.4(d)
13	13.9(q)	1.71(3H, s)	17.7(q)
14	51.4(t)	3.05(1H, d, <i>J</i> =4.03), 2.75(1H, d, <i>J</i> =4.03)	51.0(t)
15	14.4(q)	1.38(3H, s)	14.1(q)
OMe	59.2(q)	3.57(3H, s)	59.6(q)
1-OH		3.16(1H, s)	
12-OH		1.68(br. s)	

Table 2. NMR data of Mer-f3 and ovalicin.

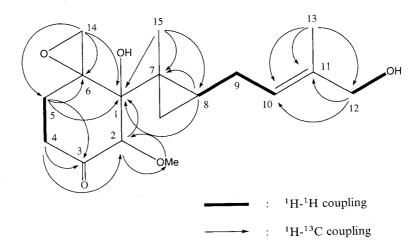


Fig. 2. ¹H-¹H coupling by COSY and ¹H-¹³C long range coupling by HMBC.

Table 3. Cytotoxicity of Mer-f3 against human tumor cells.

IC50 (M)
3.8 x 10 ⁻⁵
1.5 x 10 ⁻⁴
2.2 x 10 ⁻⁴
1.2 x 10 ⁻⁸

Table 4. Inhibitory effects on Mer-f3 against MLCR, growth of L-1210 cells.

Compounds	MLCR	L-1210
	(IC50(M))	(IC50 (M))
Mer-f3	1.0 x 10 ⁻⁹	>10-4
FK506	1.3 x 10 ⁻⁸	>10-4
Cyclosporin	1.1 x 10 ⁻⁷	8 x 10 ⁻⁶

COSY and HMBC experiments as shown in Fig. 2. On the bases of the above data, the planar structure of Mer-f3 (1) was established to be 12-hydroxy-ovalicin (Fig. 1). The relative and absolute structure of 1 are now in progress.

The cytotoxic activities of Mer-f3 against human tumor cell lines including chronic myelogenous leukemia K562, colon carcinoma HT29, breast carcinoma MCF7 and fibrosarcoma HT1080 were assessed. These cells were cultured for 3 days and the cell growth was measured by the WST-1 method³⁰. As shown in Table 3, Mer-f3 showed a potent inhibitory activity against HT1080 cells, while it showed relatively weak ones against K562, HT29 and MCF7 cells.

The inhibitory activity of Mer-f3 against human umbilical vein endothelial cells (HUVEC) was also examined. HUVEC were cultured in MCDB-131 medium supplemented with 10% FCS and 10 ng/ml of bFGF for 5 days, and the cell growth was measured by counting live cells with trypan blue dying. Mer-f3 ($IC_{50} = 3.5 \times$

 10^{-9} M) and fumagillin (IC₅₀ = 2.6×10^{-9} M) showed a potent inhibitory activity against HUVEC growth to the same extent.

Since ovalicin, structurally similar to Mer-f3, is known to have a point immunosuppressive activity as well as FK506 and cyclosporin⁴⁾, we examined the effects of Mer-f3 on a mixed lymphocyte culture reaction (MLCR) and growth of L-1210 mouse leukemia cells. The MLCR was induced as described previously⁵⁾. Briefly, responder spleen cells taken from C3H/He mice were mixed with stimulator cells taken from Balb/c mice. The stimulator cells were treated with $5 \mu g/ml$ of mitomycin C for 30 minutes and washed the drug out. The mixed cells were cultured for 3 days and [3H]TdR was added to the culture 16 hours before cell harvest. MLCR was determined by measuring the incorporation of [3H]TdR into the cultured cells. As shown in Table 4, Mer-f3 showed the most potent inhibitory activity against MLCR among the three compounds examined; the inhibitory activity of Mer-f3 was similar to that of ovalicin⁶⁾. Mer-f3 and

VOL. 52 NO. 6

FK 506, unlike cyclosporin (IC₅₀ = 8×10^{-6} M), had no inhibitory activity against L-1210 cell growth even at a concentration of 10^{-4} M.

Hiroshi Kuboki Toshio Tsuchida Kuniko Wakazono Kunio Isshiki Hiroyuki Kumagai Takeo Yoshioka

Central Research Laboratories, Mercian Co. Ltd., 4-9-1 Johnan, Fujisawa, Kanagawa 251-0057, Japan

(Received February 16, 1999)

References

1) SASSA, T.; H. KAISE & K. MUNAKATA: The structure of graphinone. Agr. Biol. Chem. 34: 649~651, 1970

- CANE, D. E. & R. H. LEVIN: Application of carbon-13 magnetic resonance to isoprenoid biosynthesis. II. Ovalicin and the use of doubly labeled mevalonate. J. Am. Chem. Soc. 98: 1183~1188, 1976
- 3) ISHIYAMA, M.; H. TOMONAGA, M. SHIGA, K. SASAMOTO, Y. OHKURA & K. UENO: Cell viability and *in vitro* cytotoxicity assay methods were developed using a combination of dyes. Biol. Pharm. Bull. 19: 1518~ 1520, 1996
- STAHELIN, H. F.: The history of cyclosporin A (Sandimmune) revisited: another point of view. Experientia 53: 5~13, 1996
- ISHIZUKA, M.; S. ISHIZEKI, T. MASUDA, A. MOMOSE, T. TAKEUCI & H. UMEZAWA: Studies on effects of for fenicinol on immune responses. J. Antibiotics 35: 1042~1048, 1982
- 6) HARTMANN, G. R.; H. RICHTER, E. M. WEINER & W. ZIMMERMANN: On the mechanism of action of the cytostatic drug anguidine and of the immunosuppressive agent ovalicin, two sesquiterpens from fungi. Planta Med. 34: 231~252, 1978